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Abstract

We study the action of a finite group on the Riemann-Roch space
of certain divisors on a curve. If G is a finite subgroup of the automor-
phism group of a projective curve X and D is a divisor on X stable
by G then we show the natural representation of G on Riemann-Roch
space L(D) = Lx(D) is a direct sum of irreducible representations
of dimension < d, where d is the size of the smallest G-orbit acting
on X. We give an example to show that this is sharp (i.e., that di-
mension d subrepresentations do occur). We also show, under certain
conditions, that d > dg, where dg denotes the largest degree of all
irreducible representations of G.
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Let X be a smooth projective (irreducible) curve over an algebraically
closed field F' and let G be a finite subgroup of automorphisms of X over F.
We often identify X with its set of F-rational points X (F'). If D is a divisor
of X which G leaves stable then G acts on the Riemann-Roch space L(D).
We ask the question: which (modular) representations arise in this way?

Although this question is interesting in its own right, our motivation for
our study lies in coding theory. The construction of Goppa codes uses the
Riemann-Roch space L(D) associated to a divisor of a curve defined over a
finite field [G]. If G is a cyclic group acting transitively on a basis of L(D)
(admittedly an optimistic expectation, but one which gets the idea across)
then one might expect that a fast encoding algorithm exists for the associated
Goppa codes. Of course, for such an application, one wants F' to be finite
(and not algebraically closed).

Similar questions have been investigated previously. For example, the
action of G on the space of regular differentials, Q' (X) (which is isomorphic
to L(K), where K is a canonical divisor '). This appears to be first looked
at from the representation-theoretic point-of-view by Hurwitz (in the case G
is cyclic) and Weil-Chevalley (in general). They were studying monodromy
representations on compact Riemann surfaces (for more details and further
references, see the book by Breuer [B] and the paper [MP]). Other related
works, include those by Nakajima [N], Kani [Ka], and Kock [K], and Borne
[Bol], [Bo2].

!The proof of Cor. 2.3 in K6ck shows one may construct K in such a way that it is
fixed by G' and the isomorphism Q!(X) = L(K) is G-equivariant.



1 The action of G on L(D)

Let X be a smooth projective curve over an algebraically closed field F'. Let
F(X) denote the function field of X (the field of rational functions on X)
and, if D is any divisor on X then the Riemann-Roch space L(D) is a finite
dimensional F-vector space given by

L(D) = Lx(D) ={f € F(X)* | div(f) + D > 0} U {0},

where div(f) denotes the (principal) divisor of the function f € F(X). Let
¢(D) denote its dimension. We recall the Riemann-Roch theorem,

(D) —¢(K — D) =deg(D)+1—g,

where K denotes a canonical divisor and ¢ the genus 2.
The action of Aut(X) on F(X) is defined by

p: Aut(X) — Aut(F(X)),
g —  (f— f9)

where f9(z) = (p(9)(f))(x) = f(g7"(z))-

Note that Y = X/@ is also smooth and F(X)% = F(Y).

Of course, Aut(X) also acts on the group Div(X) of divisors of X, de-
noted ¢(}_pdpP) = > pdpg(P), for g € Aut(X), P a prime divisor, and
dp € Z. It is easy to show that div(f9) = g(div(f)). Because of this, if
div(f) + D > 0 then div(f9) + g(D) > 0, for all g € Aut(X).

If the action of G C Aut(X) on X leaves D € Div(X) stable then we
denote the associated representation of G in L(D) by p:

p:G — Aut(L(D)).

2 Examples and special cases

Before tackling the general case, we study the Riemann-Roch representations
of G when X = P! or D is the canonical divisor.

2We often also use g to denote an element of an automorphism group G. Hopefully,
the context will make our meaning clear.



2.1 The canonical embedding

Let K denote a canonical divisor of X, so deg(K) = 2g—2 and dim(L(K)) =
g. Let {ki, ..., Ky} denote a basis for L(K). If the genus g of X is at least 2
then the morphism

p: X — POUX)) P!
o (ki) 1.t k()

defines an embedding, the “canonical embedding”, and ¢ is called the “canon-
ical map”. It is known that L(K) is isomorphic (as F-vector spaces) to the
space Q!(X) of regular Weil differentials on X. This is contained in the space
of all Weil differentials, Q(X). (In the notation of [Sti], Q'(X) = Q(X)(0).)
Since G acts on the set of places of F', it acts on the adele ring of F', hence
on the space Q(X).

Now, even though K might not be fixed by G, there is an action of G on
L(K) obtained by pulling back the action of G on Q!(X) via an isomorphism
L(K) 2 Q'(X).

The group Aut(X) acts on X and on its image ¥ = ¢(X) under an
embedding ¢ : X — P". If ¢ arises from a very ample linear system then an
automorphism of Y may be represented (via the linear system) by an element
of PGL(n + 1, F) acting on P" which preserves Y (see §8.6 of [SKKT] for
more details on such embeddings). For instance, if D is any divisor with
deg(D) > 2¢g then the morphism

6:X = pr-!
z  — (filz): .. fulx))
defines an embedding, where { f1, ..., f,} is a basis for L(D) (see, for example,

Stepanov [St], §4.4, or [SKKT]). This projective representation of G on L(D)
exists independent of whether or not D is left stable by G.

Example 1 Let X = P! /C have projective coordinates [z : y], let G = {1, g},
where g(z/y) = y/z, and let D = 2[1 : 0] — [0 : 1], so L(D) has basis
{z/y,2*/y*}. Then g(z/y) = (y/x)*(2*/y*) and g(2*/y*) = (y/x)*(z/y).
Thus, as an element of PGL(2,C), g is ( (1) 0 )

Suppose, for example, X is non-hyperelliptic of genus > 3 and ¢ arises
from the canonical embedding. In this case, we have (a) the projective rep-

resentation
TmT: G — Aut(]P’(Ql(X)))
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(acting on the canonical embeding of X') and (b) the projective representation
obtained by composing the “natural” representation G — Aut(Q(X)) with
the quotient map Aut(Q(X)) — Aut(QY(X)/F*) = Aut(P(Q'(X))). These
two representations are the same.

Remark 1 For further details on the representation G — Aut(Q(X)), see
for example, the Corollary to Theorem 2 in [K], Theorem 2.3 in [MP], see
pages 750-751 in Lewittes [Le]. or the book by T. Breuer [B].

2.2 The projective line

Let X = P'/F, so Aut(X) = PGL(2,F), where F is algebraically closed.
Let oo € X denote the element corresponding to the localization F'[z] /4. In
this case, the canonical divisor is given by K = —200, so the Riemann-Roch
theorem becomes

(D) — £(—200 — D) = deg(D) + 1.

It is known (and easy to show) that if deg(D) < 0 then £(D) = 0 and if
deg(D) > 0 then ¢(D) = deg(D) + 1.

Example 2 Most of the examples below were computed using MAGMA 2.8
[MAGMA].

Let F=TF5. Let PL=[1:0, B =[1:1], s=[1:2], P, =[1: 3],
P;=[1:4],c0=[0:1].



D basis for L(D)

200 — 2P3 ($ + 3)2

o0 — 2P3 @

200 — 2P, x?

300 — 2P, z?, 23

300 — 2P z(z +1)% (z +1)?

6P —3P; —2P;

7P1—3P3—2P5 $_5($+3)3($+1)2,
%z +3)(x+1)? v (x+3)°(z + 1)
—200+P1—3P3+2P5 @
—200+ 3P, —3P3+3P; | 2 %(x + 1) 3(x + 3)3, (z + 1) 2273 (z + 3)3
—200 + 3P, — 3P; + 3P r(x+1)3(x +4)73(x + 3)3,
(z+1)7(@@+4)°(z+3)°
P, +3P; — 2P z(z+3) 2 (x+1)?, (x+3) 3z +1)?
g (z+3) Pz +1)?
—P1+3P2—2P3 $($+3)73($+1)2
Too — 2Py — 2P; 23 (x + 3)%(x + 1)2, 2%(x + 3)*(z + 1),
z(z +3)*(z +1)%, (z +3)*(z +1)?
300 + 3P, — 2Py — 2P p(z) =2*(x +4) (a: +3)%(x +1)?,

zp(z), 2’p(x)

In the case of the projective line, there is another way to see the action
p of Aut(X) on F(X). Each function f € F(X) may be written uniquely as
a rational function f(z) = p(z)/q(x), where p(z) and ¢(x) are polynomials
that factor as the product of linear polynomials. Assume that both p and
q are monic, and assume that the linear factors of them are as well. The
group Aut(X) “acts” on the set of such functions f by permuting its zeros
and poles according to the action of G on X. (We leave aside how G acts on
the constants, so this “action” is not linear.) We call this the “permutation
action”, 7 : g — w(g)(f) = f,, where f,(z) denotes the function f with
zeros and poles permuted by g.

Lemma 3 If G C Aut(X) leaves D € Div(X) stable then

7(9)(f) = cp(9)(f),

for some constant c.



proof: Note that, by definition, div(n(g)(f)) = div(f,) = g(div(f)), for

g €Gand e L(D). Since div(r(g)(f)) = g(div(f)) = div(p(g)(f)) =
div(f9), the functions f¢ and f, must differ by a constant factor. OJ

The above lemma is useful since it is easier to deal with 7 than p in this
case.

A basis for the Riemann-Roch space is explicitly known for P'. For no-
tational simplicity, let

. T, P=[1:0]= o0,
me(z) = { (z—-p)' P=[p:1].

Lemma 4 Let Py = oo = [1 : 0] € X denote the point corresponding to
the localization F|x]1)s). For 1 < i <'s, let P; = [p; : 1] denote the point
corresponding to the localization F(x)(z—p,, for p; € F. Let D = Y77  a;P;
be a diwvisor, ay, € Z for 0 < k < s.

(a) If D is effective then
{1,mp.(x)* | 1 <k <a;0<i<s}
is a basis for L(D).

(b) If D is not effective but deg(D) > 0 then write D = dP + D', where
deg(D") =0, d > 0, and P is any point. Let q(x) € L(D') (which is a
1-dimensional vector space) be any non-zero element. Then

{mp(2)'q(z) | 0 <i < d}
is a basis for L(D).
(¢) If deg(D) < 0 then L(D) = {0}.

The first part is Lemma 2.4 in [L]. The other parts follow from the
definitions and the Riemann-Roch theorem.

Remark 2 The obvious analog of the second part of the above lemma is false
in the case of a curve of genus g > 1. In this case, if D # 0 is a divisor of
degree 0 then L(D) = {0}. (This is a consequence of Corollary 4.9 (iv) in
[St], for example.)



Example 5 If F = C and we identify X with the “Riemann sphere” C =
C U {0} then we may regard the automorphisms as linear fractional trans-
formations.

Let G be the group generated by the map ¢(x) = 1/z, v € C. Let Py be
represented by ©1 =1+ 1, let Py be represented by xo = % — %, and let Py be
represented by r3 = 1.

1. Let D = P, + P,. Then G stabilizes D and L(D) has basis {e; =
lyeo =1/(z —x1),e3 = 1/(x — x2)}. The map ¢ fizes ey, sends ey to
—mToe; — z2e3 and ez to —x1e; — Tiey. With respect to this basis, the
representation of G on L(D),

p: G — Aut(L(D))

18 determined by
1 —To —I1
po)=[0 0 -a?
0 —z3 0

2. Let D = P, + Py — P3. Then G stabilizes D and L(D) has basis {e; =
(x—=1)/(x —mz1),ea = (x —1)/(x — x2)}. With respect to this basis, the
representation p of G on L(D) is determined by

_ 0 i)
p((b) - ( T 0 ) .
This looks like it might be a non-diagonal representation. However,

with respect to the basis {e; = #gim), €y = M}, the rep-
resentation p is diagonal.

In general, we have the following result.

Theorem 6 Let X, G C Aut(X) = PGL(2,F), and D = Y. a;P; be a
divisor as above. Assume F' is algebraically closed and that the order of G is
relatively prime to the characteristic of F. Let p : G — Aut(L(D)) denote
the associated representation. This acts trivially on the constants (if any) in
L(D); we denote this action by 1. Let S = supp(D) and let

S=5USU..US,

be the decomposition of S into primitive G-sets.
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(a) If D is effective then
p =17, pi

where p; 15 a monomial representation on the subspace
V; = <mp($)ej | 1 S gj S CLj, P € SZ>,

satisfying dim(V;) = ZPjesi aj, for 1 < i < m. Here (...) denotes the
vector space span.

(b) If deg(D) > 0 but D is not effective then p is the direct sum of 1-
dimensional subrepresentations.

In particular, the representation of G on L(D) is semi-simple.

proof: We prove the first part first.

Fix for now an 7 satisfying 1 < i < m. Consider the subspace L; of L(D)
spanned by the functions fp(z) = 1/(2—2p)*"P), where P € S;, e(P, D) > 0,
and zp € F represents P € X (unless P = 0o, in which case replace zp by
0 and e(P,D) by —e(P,D)). Since G acts by permuting the points in S;
transitively, this action induces an action p; on L;. This action on L; is a
permutation representation since it is one on S;. It is irreducible since the
action on S, is transitive, by definition. Clearly @/, p,, is a subrepresentation
of p. For dimension reasons, it must be all of p, modulo the constants.

This proves the first part.

It remains to prove the second part.

Let P € supp(D) and let

Gp={9€G|g(P)= P}

denote the stabilizer of P in G (i.e., the decomposition group of the Galois
covering X — Y = X/G at P). In the construction of a basis in Lemma 4,
take the P in Lemma 4 to be as above. By this construction and Lemma 3,
the action of Gp on S induces a “diagonal action” on a basis of L(D).
Since D is not effective, we may write D = D™ — D™, where D™ and D~
are non-zero effective divisors. The action of G must preserve Dt and D~.
There is a corresponding partitioning S = ST U S~, where ST = supp(D™)
and S~ = supp(D~). Embed G into the symmetric group of S, G —
Symm(S). Since the action of G must preserve ST and S—, this embed-
ding factors through Symm/(S™) x Symm(S~). Write this factorization as

9



G C Gt x G~. Note G as a subdirect product of GT x G~ and that the
action of G on L(D) extends to an action of H = G* x G~. (G is not always
a subdirect product of Symm(S™) x Symm(S~).) Call this extension of p
to H, py. If P € St then G- C Gp (identifying G~ with a subgroup of
G), since all the elements of G~ fix such a P, so (Gp)~ = G~. Similarly, if
P € S~ then (Gp)™ = G™ since all the elements of G* fix such a P.

Combining these two paragraphs, we see that L(D) has a basis on which
G* acts “diagonally”. Similarly for G~.

Let m denote an irreducible subrepresentation of pg. Our hypotheses
imply that 7 is of the form 77 ®7~, where 7 is an irreducible representation
of G* and 7~ is an irreducible representation of G—. By the above discussion,
dim(7") = dim(7~) = 1, so dim(7) = dim(7*) - dim(7~) = 1. Sinve every
irreducible subrepresentation of py is 1-dimensional, the same must be true
for p.

This completes the proof of the second part. [

3 The general case

The goal of this section is to prove an analog of Theorem 6 for any smooth
projective curve X over an algebraically closed field F'.

Example 7 Most of the examples below were computed using MAGMA 2.8
[MAGMA].

Let X be the plane curve defined by the affine equation y* = x(x—1)(z—2)
over F = Fs. This is an elliptic curve. Let P, = (0:1:0) =00, P, = (0:
0:1),Ps=(2:0:1),Pb,=(4:3:1),P=(4:2:1), F=(3:4:1),
P,=(3:1:1),P=(1:0:1).

10



D basis for L(D)
1

=)

200 1,2

300 1,2,y

400 l,m,y,a:z
Pi+Py+..+Pg 23y /(2* +4), 2%y /(@* +4),

zy/(z* +4), y/(2* +4), y/ (25 + 42),
1L (x+3)/(z® + 3z +2), 1/(2? + 3¢ +2)
Py + ...+ Pg 2%y /(@? +4), zy/ (2 + 4), y/ (= +9),
y/(2® + 4z), 1, (z + 3) /(2 + 3z + 2),

1/(z® + 3z +2)

—Pi+Py+...+Pg ?y/(2* +4), zy/(@* +4), y/(=* + 4),
y/ (@5 +42), (z +3)/(2? + 32 +2), 1/(2% + 3z +2)
—2P; + Py + ...+ Pg zy/(z? +4), y/ (=T +4),

y/(z® + 42), (z + 3)/(22 + 32 + 2), 1/(2% + 3z + 2)
—3P1 + Po+ ..+ Pg | ay/(a" +4), y/(=* +4), y/(=° +42), 1/(z” + 32+ 2)

—4P; + Po+ ...+ Pg y/(z? +4), y/(@® + 4x), 1/(@Z + 3z + 2)
—5P; + Py + ...+ Pg y/(@*+4), y/(=® + 4z)

—6Py + Py + ...+ Pg y/(@® + 4z)

—TPy + Py + ...+ Py y/(z® +4z)

—8P; + Py + ... + Pg 0

Incidently, since D = —7TP,+ Py+...+ Py is degree 0 but L(D) is non-zero,
it must be the canonical divisor (up to linear equivalence) by [Sti], Proposition
1.6.2.

Next, we at least partially answer the question: How much of the infor-
mation about the case of P! can be “pulled-pack” to a cover X — P'?

3.1 Pull-backs of a Riemann-Roch space

Let X be a smooth curve over F' and ¢ : X — P! be a non-constant morphism
of degree d = deg(®).

Example 8 (Lorenzini [L], §IX.8; Stichtenoth [Sti], §§ VI.2-Vi.33) Assume
F is algebraically closed and char(F) # 2. Pick distinct a1, as,...,as € F,
pick any positive integers r1, ...,7s, choose c € F*, and let

S

fla,y) =y —c] [z —a).

=1

Then the curve X defined by the affine equation f(x,y) = 0 is irreducible and
the morphism ¢ : X — P! induced by the coordinate function x is ramified
only over the points P; = [a; : 1] € P!, 1 < i < s. The fiber in X over P; has
d/gcd(d,r;) elements and

S

genus(X) = 5[(s ~ 2)(d — 1) D (ged(d, ) ~ 1)

=1
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Example 9 One way to find an example of a group acting on X which
preserves a divisor on X to consider a Galois covering ¢ : X — P! with
Galois group G = Aut(X/P'). If D € Diw(P') then the action of G on
Div(X) stabilizes ¢*D. Indeed, roughly speaking, G acts by permuting the
fibers of ¢. It also acts on Lx(¢*D) and leaves stable the image of L(D) in
Lx(¢*D):
Lx(¢*D)¢ = L(D).

See [TV], Ex. 2.2.16, page 150 (which is more general than the result we
stated above), and §2 of Kani [Ka.

In particular, the multiplicity of the trivial (1-dimensional) representation
of G on Lx(¢*D) is £(D) = deg(D) + 1.

Let D € Div(P') and consider the Riemann-Roch space L(D) = Lp1(D)
of D. Define its pull-back by

¢"L(D) ={f € F(X)" | f=go¢, some g € L(D)}.

o

Note that the map g — g o ¢ defines a vector space isomorphism L(D)
¢*L(D). Thus, L(D) may be regarded as a subspace of Lx(¢*D).

The morphism ¢ induces a map ¢* : Div(P') — Div(X), defined on
points by

¢*p = Z eP/pP7
{PeX | ¢(P)=p}

where ep/, denotes the ramification index, and extended to the divisor group
by linearity ([L], page 267). This map preserves the effective divisors. We
can consider the Riemann-Roch space of the pull-back of a divisor:

Lx(¢"D) ={f € F(X)" | div(f) + ¢*D > 0}.

A natural question is to ask how the pull-back of the Riemann-Roch space is
related to the Riemann-Roch space of the pull-back. The next result answers
this. For later reference, we shall formulate the result a little more generally.

Proposition 10 Let ¢ : X — Y be a morphism of curves. For any divisor
D of Y, ¢*Ly (D) C Lx(¢*D).

proof: If f € ¢*Ly (D) then f = go ¢, for some g € Ly(D). We know
then that div(g) + D > 0. This implies ¢*(div(g)) + ¢*D > 0 since ¢*
preserves the effective divisors. But div(f) = div(g o ¢) = ¢*(div(g)), so
div(f)+¢*D > 0. O

12



Corollary 11 Let ¢ : X — Y be a birational morphism of curves. For any
divisor D of Y, ¢*Ly (D) =2 Lx(¢*D). Moreover, if G acts on both X and
Y, preserves D, and if ¢ is G-equivariant then G stabilizes ¢*D and the
1somorphism s G-equivariant.

proof: Let E = ¢*D and ¢y = ¢~!. We claim that ¢*E = D. For
all points P of X, we have ¢(¢(P)) = P; from the definition of ¢* and

1*, this identity extends to divisors. This claim and the proposition give
¢*Ly(D) C Lx(E) and ¥v*Lx(FE) C Ly (¢*E) = Ly (D). Therefore,

Y*¢"Ly (D) C *Lx(FE) C Ly (D).

Since ¢* : F(Y) — F(X) is a field isomorphism and %* = (¢*) !, the desired
isomorphism follows.

If ¢ satisfies g¢p(P) = ¢(gP), for all points P of X, and if G leaves D
stable then it must also do so to ¢*D. This G action on the Riemann-Roch
spaces must commute with the pull-backs ¢* and *, by their definitions, so
the isomorphism is G-equivariant. [J

Recall that all non-singular projective curves X are birationally equivalent
to a (possibly singular) plane curve. In some cases, this last result allows us
to reduce the problem of explicitly determining the representations of G' on
Lx (D) to the case where X is a (projective) plane curve embedded in P2
This is useful for us since the computations are much simpler in the planar
case. However, not all cases can be covered in this way, since the above result
requires that G act on both X and its plane model, which may not always
be possible.

3.2 A computational method

We present a method for determining the “one-point spaces” L(mP) for a
plane curve X. Suppose that X has an affine model defined by f(z,y) = 0,
where f € F[z,y].

Let D =), dpP, where dp = ordp(D). Fix a point P in the support of
D and let m denote a local uniformizer at P.

Suppose P is the point in X (F') at infinity. In the m-adic completion Op
of the local coordinate ring of X at P, Op, the local coordinates x and y
may be written

r = uIW_M, Yy = un_N

13



for some units u, and u, in Op, and for some integers M = M (P) € Z and
N = N(P) € Z. Then z"y* has a pole of order rM +sN at P if rM+sN > 0,
and a zero of order [rM+sN|at PifrM+sN < 0. A monomial 2"y* € F(X)
(with R > 0 and s > 0) belongs to L(D) if and only if

rM(P) + sN(P) < dp, (1)

for all P € supp(D).

3.2.1 Examples

Example 12 Suppose X is given in affine coordinates by y* = z(z—1)(x—2)
and F =F5. Let P=[0:1:0]. Then we have

Tr=u;m °, Yy = uy7r’3
for some units u, and u,. (Substitute v = u,m* and y = uy7rb into y? =
z(z — 1)(z — 2) and solve for a, b.)

A monomial x"y* is in L(5P) if and only if 2r +3s < 5, r >0, s > 0
(these last two inequalities are to avoid having a pole at [0 : 0 : 1])). These
give (r, s) € {(0,0),(1,0),(0,1),(1,1),(2,0)}, so

1,z,y,2°, 2y € L(5P).
In fact, these functions form a basis of L(5P).

Example 13 Let C be the curve y3 = z + 2% over an algebraically closed
field F' of characteristic # 3. As a projective curve, C' is given by

Y3 -X?Z-XZ*=0.

There is a morphism ¢ : C — P! giwen by [X : Y : Z] — (X : Z). The
map g: [ X Y : Z]— [X : (Y : Z], where 1 # ( € F is a cube root of 1,
generates an action of the group G = Z /3% on C. (With G acting trivially
on P!, the morphism ¢ is G-equivariant. Note the map swapping X and Z is
also an automorphism of C, though it is not in the Galois group of C — P!
so we shall not use it.)

The map ¢ is ramified over p; = [0 : 1], po = (1 : 0), p3 = (-1 : 1),
with preimages P, = ¢~ *(p1) = (0: 0: 1), P, = ¢ L(pe) = (1 :0:0),

14



Py =¢ (p3) = (=1:0:1). The action of G fizes P;, i =1,2,3. Let p € P!
be arbitrary and let

D = ¢*(p),

so typically D is a sum of three points (the preimages of p) but when p = p;, D
1s of the form 3P;. By Fxample 9, the trivial representation of G is contained
in L(D) with multiplicity 4. Thus, the G-modules L(P) are all trivial.

Example 14 Let k = C denote the complex field and let X (N) denote the
modular curve associated to the principle congruence group T'(N) (see for
example Stepanov, [St], chapter 8). The group PSL(2,Z/NZ) is contained
in the automorphism group of X (N). Over an algebraically closed field of
characteristic zero, if p > 7 is prime then Aut(X(p)) = PSL(2,F,), where
F, denotes the Galois field of p elements.

Example 15 Suppose X is given in affine coordinates by y?> = 2> + 1 and
F=Ts. Let P=1[0:1:0]. Homogenize X to y*z = 23+ 23 to find that there
is only one point at infinity (where z =10), P. In this example, the group

G =17/37 x 7.)2Z

acts by

(a,b,c)-[x:y:2]=[C"z:ny: 2],
for (a,b,c) € G. The coordinate function x on X now becomes the homoge-
neous function z/z on the projective curve. Considering the chart {y # 0},
we can form an affine isomorphism of the neighborhood of P to the affine

curve z = x° + 2° (where P is sent to O = (0,0)). Now the order of the
original x at infinity is just the order of x/z at (0,0) and

.’1}'3

1—22

ordo(z/z) = ordo(x) — ordo(z) =1 — ordo( )=1-3=-2.
So x has a pole of order 2 at infinity (as in the above example). Here we
used x as the uniformizing parameter: O is a simple (ie. smooth) point on
z = 2°+2% and so it defines a discrete valuation ring: Fla, 2|,/ (z—2*—2%).
The mazimal ideal m = (z,z) = (x) so x is the uniformizing parameter and
we can use it to give an order function.

Similarly, one can compute that the order of y is the order of 1/z at O
and this is just —3.
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Example 16 For instance, look at X : y?> = 2°+23+4, a hyperelliptic curve
of genus 2. Again there is only one point at infinity (0:1:0) but now it is a
singular point 3. Consider again the chart {y # 0}, and the point O = (0,0)
that P s sent to. We can replace the orders by intersection multiplicities
(see Fulton [F], pages 74-81, for example):

ordo(z) = I(0,V(z) NV (2® — x° — 42°)

1(0,V(2) N V(23 — 42%)) = ordy® >( 3 _ 4z ) ;

and ordo(z) =1(0,V(2) NV (z® — 2° —:cz —42°)
= I1(0,V(2) N V(2®)) = ordy,? (a°) = 5.

Thus ordo(x/z) =3 — 5= —2.
Since y restricts to 1 in the affine chart, ordo(y) = ordo(1) =0, so

ordo(y/z) =0—5= -5

On the original curve X, x has a pole of order 2 at infinity and y has a pole
of order 5 at infinity.

Remark 3 Let (xg,yo) represent the projective point P = [xg : yo : 1] €
X(F). We can write

T — To = ugm™” y—yozuwa

for some units ug, u, and some integers M = M(P) € Z and N = N(P) € Z.
A monomial (x — x0)"(y — yo)® € F(X) belongs to L(D) if and only if

rM(P)+ sN(P)+dp > 0,
for all P € supp(D).

Example 17 Suppose X is given in affine coordinates by y? = x(x—1)(x—2)
and F=TF5. Let P=(2:0:1). Then

T =24 um’, Y = UyT,

3This means that we don’t have a discrete valuation ring at O as in the above example,
so we can’t compute the orders using the uniformizing parameter directly.
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for some units ug, u,. (As above, substitute T =2+ u,m* and y = uyﬁb into
y? = z(x—1)(x—2) and solve for a, b.) A monomial (x —2) "y* is in L(4P)
only iof 2r — s < 4. To avoid having a pole at infinity, we must also have
—2r + 35 < 0. To avoid poles at (0:0:1) and (1:0:1), we take r > 0 and
s > 0. These conditions give (r,s) € {(0,0),(1,0),(2,1),(2,0),(3,2)}, so

L1/(z = 2),y/(z = 2)%1/(z - 2)*,y*/(z - 2)° € L(4P).

In fact, the functions {1,1/(xz — 2),y/(z — 2)%,1/(z — 2)?} form a basis of
L(4P).

3.2.2 A basis for the “one-point” spaces L(mP)

The ideas in the above examples indicate a method to compute L(mP), for
m € Z and a point P in a plane curve X. These lead to the following result,
for “one-point” Riemann-Roch spaces *, L(mP). We may, after a change of
coordinates, assume P is the “point at infinity” on X.

Lemma 18 Let X be a plane curve defined by y*> = g(z), where g is a
polynomial of degree d, with d odd. Let Py € X denote the point “at infinity”
on X. Assume X is smooth exrcept possibly at Py. For each m > d, the
L(mPy) has a basis consisting entirely of monomials in z and y.

proof: Note that the genus of X is g = (d — 1)/2. As in Example 16, we
see that on the curve X, = has a pole of order 2 at infinity and y has a pole of
order d at infinity. Remark 3 (see also (1) above) gives us 2%~ € L(mBP),
provided 2a + db < m, 0 < a, 0 < b. Since d is odd, the only integers
not of the form 2a + db are those odd integers less than d. Thus there are
m+1—(d—1)/2=m— g+ 1 such integers. The corresponding monomials
all have distinct order, hence must be linearly independent. Since m is large,
the Riemann-Roch theorem implies that they form all the basis vectors of
L(mP,y). O

Proposition 19 Let X be a plane curve defined by y*> = g(z), where g
is a polynomial of degree d, with d odd. Suppose G C Aut(X) is a finite
subgroup and that the point “at infinity” Py € X on X is fized by G. For
each m > d, the action of G on L(mPy) may be represented by an upper-
triangular matriz, with respect to a suitable basis.

4Such spaces are frequently used in applications to the construction of Goppa codes,
so this result may be of special interest.
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proof: The group G acts on each space in the series
(1) = L(Py) C L(2Py)) = (1,z) C ... C L(mPy) C ... .

In particular, G acts on the space () & L(2Py)/L(Px) (the quotient repre-
sentation). If o denotes this representation then o(g)(z) = x,(g)x, for some
character x, of G. This is the action of G on ().

Next, we want to determine the action of G on (y). Let £ > 1 be the
smallest integer for which a term of the form y occurs in L(kPy,). The group
G must act on (y) = L(kPy)/L((k—1)Py). If 7 denotes this representation
then 7(¢g)(y) = x-(9)y, for some character x, of G. Thus, G acts on (z'y)
by o(g) = o'r?. Since L(mP,,) has a basis consisting of monomials in z,y,
the proof is complete. []

3.3 The general case

The following is our most general result.

Theorem 20 Let X be a smooth projective curve defined over a field F.
Suppose G C Aut(X) is a finite subgroup, and that the divisor D # 0 on X
s stable by G. Let dy denotes the size of a smallest orbit of G acting on X.
Each irreducible composition factor of the representation of G on L(D) has
dimension < dy.

Remark 4 1. This is best possible in the sense that irreducible subspaces of
dimension dy can occur, by Theorem 6.

2. If F has characteristic 0 then every finite dimensional representation
of a finite group is semi-simple (Prop 9, ch 6, [Sel]). If F has characteristic
p and p does not divide |G| then every finite dimensional representation of
G 1is semi-simple (Maschke’s Theorem, Thrm 3.14, [CR], or [Sel], §15.7).

proof: Let Dy # 0 be a effective G-invariant divisor of minimal degree
do. Let d = [deg(D)/dy] denote the integer part. The group G acts on each
space in the series

. CL(—(d—m)Dy+ D) C ... C L(D) .

In particular, G' acts on the successive quotient spaces

L(-=(d=m—1)Dy+ D)/L(—(d—m)Dy+ D), 0<m<d-1,
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by the quotient representation. These are all of dimension at most dy (Prop.
3, ch 8, [F]).
O

Corollary 21 Suppose that G is a non-abelian group acting on a smooth
projective curve X defined over an algebraically closed field F' and assume
m: X — X/G is unramified °. Let dy be as in the above theorem and let dg
denote the largest degree of all irreducible (F-modular) representations of G.
Then

do > dg.

proof: Construct an effective divisor D of X fixed by G. By multiplying
by a positive integer, we may assume that the degree of D is greater than
twice the genus of Y. In this case, it is known (see §3 of Nakajima [N] or §4.7
of Borne [Bo3]) that L(D) is a free F|G]-module. In other words, L(D) =
F[G]*, for some £ > 0. Therefore the set of irreducible subrepresentations of
L(D) are the same as the set of irreducible representations of G. The result
now follows from our theorem.

Here’s a second proof, by B. Koeck (private communication, included by
permission): If the action is free (which is the same as unramified) then, by
definition, dy equals the order of G. Hence dy > dg, since every irreducible
representation is a direct summand of the regular representation by classcial
representation theory.

O

Example 22 Let X be a smooth projective curve defined over a field F.
Suppose

e G C Aut(X) is a finite subgroup,

o X(F)9 #40,

e cither char(F) = 0 or p = char(F') does not divide |G|, and
e the divisor D on X 1is stable by G.

Then the natural representation of G on L(D) decomposes as a direct sum
of one-dimensional subrepresentations.

50One may also assume G acts freely on X.
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Indeed, if X (F)¢ # 0 and the cover m : X — X /G is tamely ramified then
G must be cyclic (see Serre [Se2] Corollary 1, ch IV, §2 or Fait 4.4 in Borne
[Bol]), so it’s irreducible representations are all 1-dimensional. The fact that
L(D) decomposes as a direct sum of one-dimensional subrepresentations also
follows from the above theorem and Maschke’s theorem.

Example 23 Let k = C, let X = X(p) be he modular curve of Example 14,
where p > 7 is a prime, and let G = PSL(2,F,). The representations of this
simple group are described, for example, in Fulton and Harris [FH]®. In this
case, we have, in the notation of the above corollary, dg =p+ 1.

Example 24 Let X be a smooth projective curve over an algebraically closed
field F. Let Ky = F(Xy) be the function field of Xy. Consider a Galois
extension K/Ky with Galois group G = Gal(K/Ky,). Let X be a smooth
projective curve such that K = F(X), so G C Autp(X). Let Gp denote the
decomposition group of P in G.

We claim that there is a Kummer extension X/Xq of degree £ (£ a prime
distinct from char(F)) and a point P of X for which Gp = G. This follows
from Proposition II1.7.8 and Theorem II1.8.2 in Stichtenoth [Sti]. (The idea
1s that the Galois group G is known explicitly, it is a cyclic group of order £,
and the order of Gp is known precisely for such “Kummer covers”.)

The above corollary in this example says that the all the irreducible sub-
representations representations of G on L(mP) are 1-dimensional.

Example 25 Let F be a separable algebraic closure of F3. Let X denote the
Fermat curve over F whose projective model is given by z* + y* + 2* = 0.
The point P = (1:1:1) € X(F) is fized by the action of Ss.

Based on the Brauer character table of S3 over F3 (available in GAP
[GAP]), the group G has no 2-dimensional irreducible (modular) representa-
tions.

Definition 26 Let p denote the representation of G on L(D) as in the above
theorem. Let x1, ..., x¢ denote the distinct characters (of the irreducible
subrepresentations) which occur in the decomposition of p. We call these the
characters of D.

6Actually those of SL(2,F,) are described in [FH], but it is easy to determine the
representations of PSL(2,TF,) from those of SL(2,F,).
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For more on the relationship between the characters of D, the geometry
of X, and the divisor D itself, see [MP] for the case D = K and F' = C and
Theorem 4.5 in K6ch [K] in general. For the case where ; is one-dimensional,
see also §2 of Kani [Ka].

It would be interesting to know more precise information than that given
in Corollary 21.

Question: Are there general conditions for which dy = dg holds?

Question: Is there an analog of Corollary 21 for tamely ramified 7 :
X - X/G?

4 Applications

In this section we discuss a possible application to coding theory.
Throughout this section, we assume X, G, and D are as in Theorem 20.
Assume F' is finite.
Let E = P, + ... + P, € Div(X) be stabilized by G, where P, € X.
Assume supp(D) Nsupp(E) = 0. Let C = C(D, E) denote the Goppa code

The group G acts on C by g € G sending ¢ = (f(P1),..., f(P,)) € C to
d = (f(g*(P)),--, f(g7*(P,))). This induces a homomorphism of G into
Aut(C), denoted ¢ : G — Aut(C) (Prop. VIIL.3.3, [Sti], and §10.3, page 251,
of [St])".

To investigate the kernel of this map ¢, we introduce the following notion.
Let H € Div(X) be any divisor. We say that the space L(H) separates
points if for all points P,Q € X, f(P) = f(Q) (for all f € L(H)) implies
P = @ (see [H], chapter II, §7, for more details on this concept). If L(D)
separates points then

Ker(9) = {g € G | g(P) = P, 1< i <n}.

For example, if X is a plane curve and if the field generated by L(D) contains
the coordinate functions z, y then L(D) separates points. It is known (proof
of Prop. VII3.3, [Sti]) that if n > 2g+2then {g € G| g(P;) = P;, 1 <i<n}

"Both of these references make the mistake of defining ¢ by ¢(g)(c) =
(f(9(P1)), ..., F(g(Pyr))). However, this is not a homomorphism.
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is trivial. Therefore, if n > 2g + 2 and L(D) separates points then ¢ is
injective.

Suppose G permutes the {P;}. Then ¢(g) may be represented by a per-
mutation matrix acting on the F-vector space C. Let p be as in §1 and
assume F' contains all the N roots of unity, where N = |G|. For f in a
suitable basis of L(D), p(g9)f = x(g)f, for some character x : G — F*. Then
8(9)(c) = ((9)f (P)s - p(9) £ (Pr) = X(9)(F(P1), - f(Pu)). We have two

expressions for the image of c:

d(9)(c) = (f(g '(P1), - flg '(Pn)) = x(9)c,

where f is in a suitable basis of L(D).
This extra symmetry of the code may be useful in practice. For example,
it can be used to more efficiently store codewords in memory on a computer.

Example 27 Let G = S5 act on the genus 3 Fermat quartic X whose pro-
jective model is * + y* + 2* = 0 over By = F3(i), where i is a root of the
irreducible polynomial x> +1 € F3[z]. One can check that there are exactly 6
distinct points in the G-orbit of [=1:4i:1] € X (Fy). Let

G . [—1 . Z . 1] = {Ql; ...,Q(;},
E=Qi+..+Qs € Div(X), D=6-[1:1:1] € Div(X).

Then L(D) is 4-dimensional, by the Riemann-Roch theorem. Note that no
Qi belongs to the support of D, so we may construct the Goppa code

C={(f(@),- f(Qe)) | f € L(D)},

a generator matriz being given by the 4 X 6 matric M = (f;(Q;))1<i<ai<j<6;
where f1,..., fa are a basis of L(D). According to MAGMA [MAGMA],
dimg,(C) = 3 and the minimum distance of C is 4. (According to [Br],
this is best possible.) The action of an element in the group G on C per-
mutes the @Q;, hence may be realized by permuting the coordinates of each
codeword in C in the obvious way. (In other words, the action of G on C
is isomorphic to the regular representation of Sz on itself.) Using the group
action, storing all |C| = 9% = 729 elements may be reduced to storing only
the representatives of each orbit C'/Ss.

If instead of taking for the divisor E the sum of all the points in the orbit

of [-1:1:1], we take
E = > P,
P#[1:1:1],PeX (Fy)
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so E is of degree | X (Fg)| — 1 = 27, then the general theory (in §3.2.3 of
[TV]. for example) gives that the associated Goppa code C has length 27,
dimg, (C) = 4 and the minimum distance of C is 21. (According to [Br], this
is best known.)
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